Fourth Annual Conference on Carbon Capture & Sequestration

Developing Potential Paths Forward Based on the Knowledge, Science and Experience to Date

Geologic-Coal Seams (2)

Effects of Shrinkage and Swelling on Economics of Sequestration in Coal

Grant S. Bromhal, NETL/US DOE; Sinisha A. Jikich, NETL/Parsons F. Burcu Gorucu, NETL/Penn State; W. Neal Sams, NETL/EG&G Turgay Ertekin, Penn State; Duane H. Smith, NETL/US DOE

May 2-5, 2005, Hilton Alexandria Mark Center, Alexandria Virginia

Problem: How does inclusion of coal swelling change economic predictions for sequestration in Eastern coal seams?

- Eastern coal seams tend to be thin with high methane content and sequestration capacity per mass of coal and low water content relative to western coals.
- Shrinkage and swelling of coal in the presence of CO₂ is poorly understood, but some simple models have been developed.
- Some studies have been performed to consider the effects of coal material properties on sequestration capacity, but economics have not been included.

Approach: Economic analyses were based on coal seam simulations.

- Use PSU-COALCOMP, a state-of-the-art coalbed methane/sequestration simulator.
- Simulate sequestration in coal seams with a range of coal material properties (E, \vee , ϕ).
- Collect start-up and operational cost data.
- Use "net present value" (NPV) analysis to compare multiple-year scenarios at different rates of return.

Coal shrinkage and swelling can have significant impact of cleat permeability.

- Based on the Palmer-Mansoori model
- Most important effect is on permeability
- Most important coal properties for shrinkage and swelling:
 - − Porosity (♦)
 - Young's modulus (E)
 - Poisson's ratio (v)

A 3-mile x 3-mile area with repeated well patterns was used for the purpose of scaling the economics.

- Inverted five spot pattern, 160 acres
- Wells for single pattern:
 - four producers (black squares)
 - one injector (red squares)
- Wells needed for the repeated pattern:
 - 49 producers
 - -36 injectors
- Thirty-six full patterns to cover area

Reservoir properties used are from Pittsburgh coal.

Reservoir Thickness	2m	Critical Gas Saturation	0.0 %
Depth	425 m	Critical Water Saturation	10.0%
Lateral Permeability	0.01 μm ² (~10md)	Initial Water Saturation	40%
Skin	0.0	Reservoir Temperature	45°C
Sorption Volume constant (CH ₄ , CO ₂)	15 kg/tonne, 90 kg/tonne	Initial Mole Fraction of Gas (CH ₄ , CO ₂)	100% 0%
Sorption Pressure constant (CH ₄ , CO ₂)	5000 kPa, 2000 kPa	Reservoir Drainage Area	4.8 km x 4.8 km
Rock Density	1.4 g/cm ³	Wellbore Radius	0.1 m
Initial Reservoir Pressure	5000 kPa (~725 psi)	Coalface Pressure at Producers	700 kPa (~100psi)

Costs used were from industry and other available sources.

	Cost Types	Amounts (\$k)
Start up	Drilling per well Total for 85 wells	94 7,990
	Surface Equipment Total for 85 wells	19 1,615
	Downhole Equipment Total for 85 wells	8 680
	Pipeline costs 10 miles	150
	SMV capital costs (@10%)	1,045
Total Start-up		11,480
Yearly Costs	Operation and Maintenance	3,060
	SMV maintenance costs (@10%)	305
Total Y	early costs	3,365

Economic parameters	Price	
CH ₄ price (\$/mcf)	3 4 5	
CO ₂ cost (\$/tonne); (\$/Mcf)	10 0.53 20 1.05 30 1.58 40 2.10 50 2.63	
CO ₂ credit (\$/tonne); (\$/Mcf)	0 0.0 5 0.26 10 0.53 15 0.79 20 1.05	
Water Disposal Cost (\$/STB)	0.40 0.99	
Interest Rate (%)	6 9 12 15 18	

Several economic parameters were varied.

Net present value (NPV) analysis was used for the economics.

- Each year, costs are subtracted from revenues.
- Profits are discounted to year zero (project start year) using given rate of return.
- NPV for all years is summed to give a single cumulative project NPV.
- NPV helps compare projects that have different dollar values in the future and different project lengths.

Red diamonds are yearly NPV values; blue line is cumulative NPV.

We performed sensitivity studies to determine the effects of coal seam properties (related to swelling) on project worth.

Coal parameters

- Young's modulus (E)
- − Porosity (♦)
- Poisson's ratio (v)

Young's Modulus (x10 ⁶) Pa (x10 ⁶) psi		Poisson's Ratio	Porosity (%)
1,000	0.145	0.2	0.5
5,000	0.725	0.3	1
10,000	1.450	0.4	2

Net present value depends on the coal seam properties in a complex way.

For a fixed set of economic parameters, the NPV depends heavily on Young's modulus, Poisson's ratio, and porosity.

Young's modulus has a much stronger effect on

At low Young's modulus, higher Poisson's ratio give better results.

However, at high Young's modulus, lower Poisson's ratio give better sesults initials, forg#/date

Swelling can significantly reduce injectivity.

Swelling will have a significant impact on project worth.

- At low CO₂ costs, neglecting swelling will lead to overestimating project worth.
- But at high CO₂ costs, neglecting swelling will lead to underestimating project worth.

Porosity can have more impact than CO₂ cost.

Conclusion: Shrinkage and swelling should be taken into account when planning coal seam sequestration.

- Injectivity of CO₂ decreases when swelling occurs.
- Cleat porosity and Young's modulus are critical parameters in determining a project's value.
- Profits from a project may be affected positively or negatively because of swelling.
- The net CO₂ cost will help determine if swelling contributes positively or negatively to NPV.

Other things to consider:

- Every coal seam is different!!!
- Multiple coal seams provide greater economic incentive.
- Different well patterns can be used to optimize sequestration.
- Injectivity may be increased by stimulating wells.
- Horizontal wells vs. vertical wells.
- Rising natural gas prices raise possibilities.
- Monte Carlo analysis may provide further insight.

